Processing math: 6%

If there is one prayer that you should pray/sing every day and every hour, it is the LORD's prayer (Our FATHER in Heaven prayer)
It is the most powerful prayer. A pure heart, a clean mind, and a clear conscience is necessary for it.
- Samuel Dominic Chukwuemeka

"The earth is the LORD's and the fullness thereof, the world and all who dwell therein. For He has founded it upon the seas and established it upon the waters. Who may ascend the hill of the LORD? Who may stand in His holy place? He who has clean hands and a pure heart, who does not lift up his soul to an idol or swear deceitfully. He shall receive blessing from the LORD, and vindication from the GOD of his salvation. Such is the generation of those who seek Him, who seek Your face, O GOD of Israel. Lift up your heads, O gates! Be lifted up, O ancient doors, that the KING of Glory may enter! Who is this KING of Glory? The LORD strong and mighty, the LORD mighty in battle. Lift up your heads, O gates! Be lifted up, O ancient doors, that the KING of Glory may enter! Who is He, this KING of Glory? The LORD of Hosts - He is the KING of Glory." - Psalm 24

The Joy of a Teacher is the Success of his Students. - Samuel Dominic Chukwuemeka

Solution of Linear Systems by Cramer's Rule (Method of Determinants)

Samuel Dominic Chukwuemeka (SamDom For Peace) Calculators: Calculators

Prerequisites:
(1.) Numbers and Notations
(2.) Fractions, Decimals, and Percents
(3.) Expressions and Equations

For ACT Students
The ACT is a timed exam...60 questions for 60 minutes
This implies that you have to solve each question in one minute.
Some questions will typically take less than a minute a solve.
Some questions will typically take more than a minute to solve.
The goal is to maximize your time. You use the time saved on those questions you solved in less than a minute, to solve the questions that will take more than a minute.
So, you should try to solve each question correctly and timely.
So, it is not just solving a question correctly, but solving it correctly on time.
Please ensure you attempt all ACT questions.
There is no negative penalty for a wrong answer.

For SAT Students
Any question labeled SAT-C is a question that allows a calculator.
Any question labeled SAT-NC is a question that does not allow a calculator.

For JAMB Students
Calculators are not allowed. So, the questions are solved in a way that does not require a calculator.

For WASSCE Students: Unless specified otherwise:
Any question labeled WASSCE-FM is a question from the WASSCE Further Mathematics/Elective Mathematics

For GCSE Students
All work is shown to satisfy (and actually exceed) the minimum for awarding method marks.
Calculators are allowed for some questions. Calculators are not allowed for some questions.

For NSC Students
For the Questions:
Any space included in a number indicates a comma used to separate digits...separating multiples of three digits from behind.
Any comma included in a number indicates a decimal point.
For the Solutions:
Decimals are used appropriately rather than commas
Commas are used to separate digits appropriately.

Solve all questions.
Check all solutions where applicable.
Show all work.

(1.) ACT If x + y = 26 and xy = 14, then y = ?

F.6G.7H.12J.20K.40

x+y=26xy=14[1111][xy]=[2614]

y=|126114||1111|

y=1(14)1(26)1(1)1(1)=142611=122=6
(2.) ACT When y = x and x + y = 10 are graphed in the standard (x, y) coordinate plane, at which point do they intersect?

A.(5,5)B.(0,10)C.(5,5)D.(5,5)E.(10,0)

y=xx=yxy=0...eqn.(1)x+y=10...eqn.(2)[1111][xy]=[010]

x=|01101||1111|andy=|10110||1111|

x = \dfrac{0(1) - 10(-1)}{1(1) - 1(-1)} \\[5ex] = \dfrac{0 + 10}{1 + 1} \\[5ex] = \dfrac{10}{2} \\[5ex] = 5 \\[3ex] y = \dfrac{1(10) - 1(0)}{1(1) - 1(-1)} \\[5ex] = \dfrac{10 - 0}{1 + 1} \\[5ex] = \dfrac{10}{2} \\[5ex] = 5 \\[3ex] \therefore (x, y) = (5, 5) \\[3ex] The two functions intersect at (5, 5)
(3.)

(4.) ACT What is the value of b in the solution to the system of equations below?

3a - 2b = 21 \\[3ex] a + 3b = -4 \\[5ex] A.\:\: 17 \\[3ex] B.\:\: 9 \\[3ex] C.\:\: 5 \\[3ex] D.\:\: -3 \\[3ex] E.\:\: -5 \\[3ex]

3a - 2b = 21 \\[3ex] a + 3b = -4 \\[5ex] \begin{bmatrix} 3 & -2 \\[3ex] 1 & 3 \end{bmatrix} \begin{bmatrix} a \\[3ex] b \end{bmatrix} = \:\:\: \begin{bmatrix} 21 \\[3ex] -4 \end{bmatrix}

b = \dfrac{ \begin{vmatrix} 3 \hspace{3em} 21 \\[3ex] 1 \hspace{2em} -4 \end{vmatrix}} {\begin{vmatrix} 3 \hspace{2em} -2 \\[3ex] 1 \hspace{3em} 3 \end{vmatrix}}

y = \dfrac{3(-4) - 1(21)}{3(3) - 1(-2)} \\[5ex] = \dfrac{-12 - 21}{9 + 2} \\[5ex] = -\dfrac{33}{11} \\[5ex] = -3
(5.) ACT Which of the following (x, y) pairs is the solution for the system of equations: x + 2y = 4 and −2x + y = 7?

A.\:\: (-2, 3) \\[3ex] B.\:\: (-1.2, 5) \\[3ex] C.\:\: (1, 1.5) \\[3ex] D.\:\: (2, 1) \\[3ex] E.\:\: (4, 0) \\[3ex]

We can solve this question using at least two methods.

First Method: Test the Options
LHS = RHS for both equations

LHS RHS
(-2, 3) \implies x = -2, \;\;\; y = 3
x + 2y \\[3ex] -2 + 2(3) \\[3ex] -2 + 6 \\[3ex] 4 \checkmark
-2x + y \\[3ex] -2(-2) + 3 \\[3ex] 4 + 3 \\[3ex] 7 \checkmark
4

7
Option A is YES
(-1.2, 5) \implies x = -1.2, \;\;\; y = 5
x + 2y \\[3ex] -1.2 + 2(5) \\[3ex] -1.2 + 10 \\[3ex] 8.8 \large\unicode{x2718}
-2x + y \\[3ex] -2(-1.2) + 5 \\[3ex] 2.4 + 5 \\[3ex] 7.4 \large\unicode{x2718}
4

7
Option B is NO
(1, 1.5) \implies x = 1, \;\;\; y = 1.5
x + 2y \\[3ex] 1 + 2(1.5) \\[3ex] 1 + 3 \\[3ex] 4 \checkmark
-2x + y \\[3ex] -2(1) + 1.5 \\[3ex] -2 + 1.5 \\[3ex] -0.5 \large\unicode{x2718}
4

7
Option C is NO
(2, 1) \implies x = 2, \;\;\; y = 1
x + 2y \\[3ex] 2 + 2(1) \\[3ex] 2 + 2 \\[3ex] 4 \checkmark
-2x + y \\[3ex] -2(2) + 1 \\[3ex] -4 + 1 \\[3ex] -3 \large\unicode{x2718}
4

7
Option D is NO
(4, 0) \implies x = 4, \;\;\; y = 0
x + 2y \\[3ex] 4 + 2(0) \\[3ex] 4 + 0 \\[3ex] 4 \checkmark
-2x + y \\[3ex] -2(4) + 0 \\[3ex] -8 \large\unicode{x2718}
4

7
Option E is NO

Second Method: Solution by Cramer's Rule

x + 2y = 4 ...eqn.(1) \\[3ex] -2x + y = 7 ...eqn.(2) \\[5ex] \begin{bmatrix} 1 & 2 \\[3ex] -2 & 1 \end{bmatrix} \begin{bmatrix} x \\[3ex] y \end{bmatrix} = \:\:\: \begin{bmatrix} 4 \\[3ex] 7 \end{bmatrix}

x = \dfrac{ \begin{vmatrix} 4 \hspace{2em} 2 \\[3ex] 7 \hspace{2em} 1 \end{vmatrix}} {\begin{vmatrix} 1 \hspace{2em} 2 \\[3ex] -2 \hspace{2em} 1 \end{vmatrix}} \:\:\:and\:\:\: y = \dfrac{ \begin{vmatrix} 1 \hspace{2em} 4 \\[3ex] -2 \hspace{2em} 7 \end{vmatrix}} {\begin{vmatrix} 1 \hspace{2em} 2 \\[3ex] -2 \hspace{2em} 1 \end{vmatrix}}

x = \dfrac{4(1) - 7(2)}{1(1) - -2(2)} \\[5ex] = \dfrac{4 - 14}{1 + 4} \\[5ex] = -\dfrac{10}{5} \\[5ex] = -2 \\[3ex] y = \dfrac{1(7) - -2(4)}{1(1) - -2(2)} \\[5ex] = \dfrac{7 + 8}{1 + 4} \\[5ex] = \dfrac{15}{5} \\[5ex] = 3 \\[3ex] \therefore (x, y) = (-2, 3)
(6.) GCSE Solve the following simultaneous equations. 2x + y = 8 \\[3ex] x - y = 1

2x + y = 8 ...eqn.(1) \\[3ex] x - y = 1 ...eqn.(2) \\[5ex] \begin{bmatrix} 2 & 1 \\[3ex] 1 & -1 \end{bmatrix} \begin{bmatrix} x \\[3ex] y \end{bmatrix} = \:\:\: \begin{bmatrix} 8 \\[3ex] 1 \end{bmatrix}

x = \dfrac{ \begin{vmatrix} 8 \hspace{3em} 1 \\[3ex] 1 \hspace{2em} -1 \end{vmatrix}} {\begin{vmatrix} 2 \hspace{3em} 1 \\[3ex] 1 \hspace{2em} -1 \end{vmatrix}} \:\:\:and\:\:\: y = \dfrac{ \begin{vmatrix} 2 \hspace{2em} 8 \\[3ex] 1 \hspace{2em} 1 \end{vmatrix}} {\begin{vmatrix} 2 \hspace{3em} 1 \\[3ex] 1 \hspace{2em} -1 \end{vmatrix}}

x = \dfrac{8(-1) - 1(1)}{2(-1) - 1(1)} \\[5ex] = \dfrac{-8 - 1}{-2 - 1} \\[5ex] = \dfrac{-9}{-3} \\[5ex] = 3 \\[3ex] y = \dfrac{2(1) - 1(8)}{2(-1) - 1(1)} \\[5ex] = \dfrac{2 - 8}{-2 - 1} \\[5ex] = \dfrac{-6}{-3} \\[5ex] = 2 \\[3ex] Check
(x, y) = (3, 2)
LHS RHS
2x + y \\[3ex] 2(3) + 2 \\[3ex] 6 + 2 \\[3ex] 8
x - y \\[3ex] 3 - 2 \\[3ex] 1
8
1
(7.) Solve the following system of equations. 5x - 4y = 22 \\[3ex] -7x - 3y = -5

5x - 4y = 22 ...eqn.(1) \\[3ex] -7x - 3y = -5 ...eqn.(2) \\[5ex] \begin{bmatrix} 5 & -4 \\[3ex] -7 & -3 \end{bmatrix} \begin{bmatrix} x \\[3ex] y \end{bmatrix} = \:\:\: \begin{bmatrix} 22 \\[3ex] -5 \end{bmatrix}

x = \dfrac{ \begin{vmatrix} 22 \hspace{3em} -4 \\[3ex] -5 \hspace{3em} -3 \end{vmatrix}} {\begin{vmatrix} 5 \hspace{3em} -4 \\[3ex] -7 \hspace{2em} -3 \end{vmatrix}} \:\:\:and\:\:\: y = \dfrac{ \begin{vmatrix} 5 \hspace{3em} 22 \\[3ex] -7 \hspace{2em} -5 \end{vmatrix}} {\begin{vmatrix} 5 \hspace{3em} -4 \\[3ex] -7 \hspace{2em} -3 \end{vmatrix}}

x = \dfrac{22(-3) - -5(-4)}{5(-3) - -7(-4)} \\[5ex] = \dfrac{-66 - 20}{-15 - 28} \\[5ex] = \dfrac{-86}{-43} \\[5ex] = 2 \\[3ex] y = \dfrac{5(-5) - -7(22)}{5(-3) - -7(-4)} \\[5ex] = \dfrac{-25 + 154}{-15 - 28} \\[5ex] = \dfrac{129}{-43} \\[5ex] = -3 \\[3ex] Check
x = 2,\;\;\; y = -3
LHS RHS
5x - 4y \\[3ex] 5(2) - 4(-3) \\[3ex] 10 + 12 \\[3ex] 22
-7x - 3y \\[3ex] -7(2) - 3(-3) \\[3ex] -14 + 9 \\[3ex] -5
22
-5
(8.) curriculum.gov.mt Solve the simultaneous equations:

6a - 5b = 19 \\[3ex] 2a + b = 9 \\[3ex]

6a - 5b = 19 ...eqn.(1) \\[3ex] 2a + b = 9 ...eqn.(2) \\[5ex] \begin{bmatrix} 6 & -5 \\[3ex] 2 & 1 \end{bmatrix} \begin{bmatrix} a \\[3ex] b \end{bmatrix} = \:\:\: \begin{bmatrix} 19 \\[3ex] 9 \end{bmatrix}

a = \dfrac{ \begin{vmatrix} 19 \hspace{2em} -5 \\[3ex] 9 \hspace{3em} 1 \end{vmatrix}} {\begin{vmatrix} 6 \hspace{2em} -5 \\[3ex] 2 \hspace{3em} 1 \end{vmatrix}} \:\:\:and\:\:\: b = \dfrac{ \begin{vmatrix} 6 \hspace{2em} 19 \\[3ex] 2 \hspace{2em} 9 \end{vmatrix}} {\begin{vmatrix} 6 \hspace{2em} -5 \\[3ex] 2 \hspace{3em} 1 \end{vmatrix}}

a = \dfrac{19(1) - 9(-5)}{6(1) - 2(-5)} \\[5ex] = \dfrac{19 + 45}{6 + 10} \\[5ex] = \dfrac{64}{16} \\[5ex] = 4 \\[3ex] b = \dfrac{6(9) - 2(19)}{6(1) - 2(-5)} \\[5ex] = \dfrac{54 - 38}{6 + 10} \\[5ex] = \dfrac{16}{16} \\[5ex] = 1 \\[3ex] Check
(a, b) = (4, 1)
LHS RHS
6a - 5b \\[3ex] 6(4) - 5(1) \\[3ex] 24 - 5 \\[3ex] 19
2a + b \\[3ex] 2(4) + 1 \\[3ex] 8 + 1 \\[3ex] 9
19
9
(9.)


(10.) ACT Which of the following (x, y) pairs is the solution for the system of equations x + 2y = 2 and −x + y = 7?

A.\:\: (-4, 3) \\[3ex] B.\:\: (-1, 1.5) \\[3ex] C.\:\: (1, 0.5) \\[3ex] D.\:\: (0, 1) \\[3ex] E.\:\: (2, 0) \\[3ex]

We can solve this question using at least two methods.

First Method: Test the Options
LHS = RHS for both equations

LHS RHS
(-4, 3) \implies x = -4, \;\;\; y = 3
x + 2y \\[3ex] -4 + 2(3) \\[3ex] -4 + 6 \\[3ex] 2 \checkmark
-x + y \\[3ex] -(-4) + 3 \\[3ex] 4 + 3 \\[3ex] 7 \checkmark
2

7
Option A is YES
(-1, 1.5) \implies x = -1, \;\;\; y = 1.5
x + 2y \\[3ex] -1 + 2(1.5) \\[3ex] -1 + 3 \\[3ex] 2 \checkmark
-x + y \\[3ex] -(-1) + 1.5 \\[3ex] 1 + 1.5 \\[3ex] 2.5 \large\unicode{x2718}
2

7
Option B is NO
(1, 0.5) \implies x = 1, \;\;\; y = 0.5
x + 2y \\[3ex] 1 + 2(0.5) \\[3ex] 1 + 1 \\[3ex] 2 \checkmark
-x + y \\[3ex] -1 + 0.5 \\[3ex] -0.5 \large\unicode{x2718}
2

7
Option C is NO
(0, 1) \implies x = 0, \;\;\; y = 1
x + 2y \\[3ex] 0 + 2(1) \\[3ex] 0 + 2 \\[3ex] 2 \checkmark
-x + y \\[3ex] -0 + 1 \\[3ex] 1 \large\unicode{x2718}
2

7
Option D is NO
(2, 0) \implies x = 2, \;\;\; y = 0
x + 2y \\[3ex] 2 + 2(0) \\[3ex] 2 + 0 \\[3ex] 2 \checkmark
-x + y \\[3ex] -2 + 0 \\[3ex] -2 \large\unicode{x2718}
2

7
Option E is NO

Second Method: Solution by Cramer's Rule

x + 2y = 4 ...eqn.(1) \\[3ex] -2x + y = 7 ...eqn.(2) \\[5ex] \begin{bmatrix} 1 & 2 \\[3ex] -1 & 1 \end{bmatrix} \begin{bmatrix} x \\[3ex] y \end{bmatrix} = \:\:\: \begin{bmatrix} 2 \\[3ex] 7 \end{bmatrix}

x = \dfrac{ \begin{vmatrix} 2 \hspace{2em} 2 \\[3ex] 7 \hspace{2em} 1 \end{vmatrix}} {\begin{vmatrix} 1 \hspace{2em} 2 \\[3ex] -1 \hspace{2em} 1 \end{vmatrix}} \:\:\:and\:\:\: y = \dfrac{ \begin{vmatrix} 1 \hspace{2em} 2 \\[3ex] -1 \hspace{2em} 7 \end{vmatrix}} {\begin{vmatrix} 1 \hspace{2em} 2 \\[3ex] -1 \hspace{2em} 1 \end{vmatrix}}

x = \dfrac{2(1) - 7(2)}{1(1) - -1(2)} \\[5ex] = \dfrac{2 - 14}{1 + 2} \\[5ex] = -\dfrac{12}{3} \\[5ex] = -4 \\[3ex] y = \dfrac{1(7) - -1(2)}{1(1) - -1(2)} \\[5ex] = \dfrac{7 + 2}{1 + 2} \\[5ex] = \dfrac{9}{3} \\[5ex] = 3 \\[3ex] \therefore (x, y) = (-4, 3)
(11.)


(12.)


(13.)


(14.)


(15.)

(16.)

(17.) GCSE Solve the simultaneous equations 2x + 4y = -9 \\[3ex] 2y = 4x - 7

2x + 4y = -9 ...eqn.(1) \\[3ex] 2y = 4x - 7 ...eqn.(2) \\[3ex] Arrange\;\;eqn.(2)\;\;to\;\;be\;\;in\;\;standard\;\;form \\[3ex] 4x - 7 = 2y \\[3ex] 4x - 2y = 7 ...modified\;\;eqn.(2) \\[5ex] \begin{bmatrix} 2 & 4 \\[3ex] 4 & -2 \end{bmatrix} \begin{bmatrix} x \\[3ex] y \end{bmatrix} = \:\:\: \begin{bmatrix} -9 \\[3ex] 7 \end{bmatrix}

x = \dfrac{ \begin{vmatrix} -9 \hspace{2em} 4 \\[3ex] 7 \hspace{2em} -2 \end{vmatrix}} {\begin{vmatrix} 2 \hspace{3em} 4 \\[3ex] 4 \hspace{2em} -2 \end{vmatrix}} \:\:\:and\:\:\: y = \dfrac{ \begin{vmatrix} 2 \hspace{2em} -9 \\[3ex] 4 \hspace{3em} 7 \end{vmatrix}} {\begin{vmatrix} 2 \hspace{3em} 4 \\[3ex] 4 \hspace{2em} -2 \end{vmatrix}}

x = \dfrac{-9(-2) - 7(4)}{2(-2) - 4(4)} \\[5ex] = \dfrac{18 - 28}{-4 - 16} \\[5ex] = \dfrac{-10}{-20} \\[5ex] = \dfrac{1}{2} \\[5ex] y = \dfrac{2(7) - 4(-9)}{2(-2) - 4(4)} \\[5ex] = \dfrac{14 + 36}{-4 - 16} \\[5ex] = \dfrac{50}{-20} \\[5ex] = -\dfrac{5}{2} \\[5ex] (x, y) = \left(\dfrac{1}{2}, -\dfrac{5}{2}\right) \\[5ex] Check
(x, y) = \left(\dfrac{1}{2}, -\dfrac{5}{2}\right)
LHS RHS
2x + 4y \\[3ex] 2\left(\dfrac{1}{2}\right) + 4\left(-\dfrac{5}{2}\right) \\[5ex] 1 + 2(-5) \\[3ex] 1 - 10 \\[3ex] -9
2y \\[3ex] 2\left(-\dfrac{5}{2}\right) \\[5ex] -5
-9
4x - 7 \\[3ex] 4\left(\dfrac{1}{2}\right) - 7 \\[5ex] 2 - 7 \\[3ex] -5
(18.)

(19.) JAMB Solve the pair of equations for x and y respectively

2x^{-1} - 3y^{-1} = 4 \\[3ex] 4x^{-1} + y^{-1} = 1 \\[5ex] A.\;\; -1, 2 \\[3ex] B.\;\; 1, 2 \\[3ex] C.\;\; 2, 1 \\[3ex] D.\;\; 2, -1 \\[3ex]

Let: \\[3ex] c = \dfrac{1}{x} \\[5ex] d = \dfrac{1}{y} \\[5ex] \implies \\[3ex] 2x^{-1} = \dfrac{2}{x} = 2\left(\dfrac{1}{x}\right) = 2c \\[5ex] 3y^{-1} = \dfrac{3}{y} = 3\left(\dfrac{1}{y}\right) = 2d \\[5ex] 4x^{-1} = \dfrac{4}{x} = 4\left(\dfrac{1}{x}\right) = 4c \\[5ex] y^{-1} = \dfrac{1}{y} = d \\[5ex] \implies \\[3ex] 2c - 3d = 4 ...eqn.(1) \\[3ex] 4c + d = 1 ...eqn.(2) \\[5ex] \begin{bmatrix} 2 & -3 \\[3ex] 4 & 1 \end{bmatrix} \begin{bmatrix} c \\[3ex] d \end{bmatrix} = \:\:\: \begin{bmatrix} 4 \\[3ex] 1 \end{bmatrix}

c = \dfrac{ \begin{vmatrix} 4 \hspace{1.1em} -3 \\[3ex] 1 \hspace{2em} 1 \end{vmatrix}} {\begin{vmatrix} 2 \hspace{1.1em} -3 \\[3ex] 4 \hspace{2em} 1 \end{vmatrix}} \:\:\:and\:\:\: d = \dfrac{ \begin{vmatrix} 2 \hspace{2em} 4 \\[3ex] 4 \hspace{2em} 1 \end{vmatrix}} {\begin{vmatrix} 2 \hspace{1.1em} -3 \\[3ex] 4 \hspace{2em} 1 \end{vmatrix}}

c = \dfrac{4(1) - 1(-3)}{2(1) - 4(-3)} \\[5ex] = \dfrac{4 + 3}{2 + 12} \\[5ex] = \dfrac{7}{14} \\[5ex] = \dfrac{1}{2} \\[5ex] d = \dfrac{2(1) - 4(4)}{2(1) - 4(-3)} \\[5ex] = \dfrac{2 - 16}{2 + 12} \\[5ex] = \dfrac{-14}{14} \\[5ex] = -1 \\[3ex] \underline{Recall} \\[3ex] c = \dfrac{1}{x} \implies x = \dfrac{1}{c} \\[5ex] x = 1 \div c \\[3ex] x = 1 \div \dfrac{1}{2} \\[5ex] x = 1 * \dfrac{2}{1} \\[5ex] x = 2 \\[3ex] d = \dfrac{1}{y} \implies y = \dfrac{1}{d} \\[5ex] y = \dfrac{1}{-1} \\[5ex] y = -1 \\[3ex] Check
x = 2,\;\;\;y = -1
LHS RHS
2x^{-1} - 3y^{-1} \\[3ex] \dfrac{2}{x} - \dfrac{3}{y} \\[5ex] \dfrac{2}{2} - \dfrac{3}{-1} \\[5ex] 1 - -3 \\[3ex] 1 + 3 \\[3ex] 4
4x^{-1} + y^{-1} \\[3ex] \dfrac{4}{x} + \dfrac{1}{y} \\[5ex] \dfrac{4}{2} + \dfrac{1}{-1} \\[5ex] 2 + - 1 \\[3ex] 2 - 1 \\[3ex] 1
4
1
(20.) SAT-C y = 3x + 6 \\[3ex] y = -3x + 9 The solution to the given system of equations is (x, y)
What is the value of y?

A)\;\; 15 \\[3ex] B)\;\; 7.5 \\[3ex] C)\;\; 1.5 \\[3ex] D)\;\; 0.5 \\[3ex]

y = 3x + 6 \\[3ex] -3x + y = 6 ...eqn.(1) \\[3ex] y = -3x + 9 \\[3ex] 3x + y = 9 ...eqn.(2) \\[5ex] \begin{bmatrix} -3 & 1 \\[3ex] 3 & 1 \end{bmatrix} \begin{bmatrix} x \\[3ex] y \end{bmatrix} = \:\:\: \begin{bmatrix} 6 \\[3ex] 9 \end{bmatrix}

y = \dfrac{ \begin{vmatrix} -3 \hspace{2em} 6 \\[3ex] 3 \hspace{2.5em} 9 \end{vmatrix}} {\begin{vmatrix} -3 \hspace{2em} 1 \\[3ex] 3 \hspace{2.5em} 1 \end{vmatrix}}

y = \dfrac{-3(9) - 3(6)}{-3(1) - 3(1)} \\[5ex] = \dfrac{-27 - 18}{-3 - 3} \\[5ex] = \dfrac{-45}{-6} \\[5ex] = 7.5




Top




(21.)


(22.)

(23.) GCSE Solve the simultaneous equations 2x + 3y = 5p \\[3ex] \;\;\;\;\; y = 2x + p where p is a constant.
Give your answers in terms of p in their simplest form.


2x + 3y = 5p ...eqn.(1) \\[3ex] y = 2x + p ...eqn.(2) \\[3ex] Put\;\;eqn.(2) \;\;in\;\;standard\;\;form \\[3ex] -2x + y = p ...new\;\;eqn.(2) \\[5ex] \begin{bmatrix} 2 & 3 \\[3ex] -2 & 1 \end{bmatrix} \begin{bmatrix} x \\[3ex] y \end{bmatrix} = \:\:\: \begin{bmatrix} 5p \\[3ex] p \end{bmatrix}

x = \dfrac{ \begin{vmatrix} 5p \hspace{2em} 3 \\[3ex] p \hspace{2.2em} 1 \end{vmatrix}} {\begin{vmatrix} 2 \hspace{3em} 3 \\[3ex] -2 \hspace{2.5em} 1 \end{vmatrix}} \:\:\:and\:\:\: y = \dfrac{ \begin{vmatrix} 2 \hspace{3em} 5p \\[3ex] -2 \hspace{3em} p \end{vmatrix}} {\begin{vmatrix} 2 \hspace{3em} 3 \\[3ex] -2 \hspace{2.5em} 1 \end{vmatrix}}

x = \dfrac{5p(1) - p(3)}{2(1) - -2(3)} \\[5ex] = \dfrac{5p - 3p}{2 + 6} \\[5ex] = \dfrac{2p}{8} \\[5ex] = \dfrac{p}{4} \\[5ex] y = \dfrac{2(p) - -2(5p)}{2(1) - -2(3)} \\[5ex] = \dfrac{2p + 10p}{2 + 6} \\[5ex] = \dfrac{12p}{8} \\[5ex] = \dfrac{3p}{2} \\[5ex] Check
x = \dfrac{p}{4} \\[5ex] y = \dfrac{3p}{2}
LHS RHS
2x + 3y \\[3ex] 2\left(\dfrac{p}{4}\right) + 3\left(\dfrac{3p}{2}\right) \\[5ex] \dfrac{p}{2} + \dfrac{9p}{2} \\[5ex] \dfrac{p + 9p}{2} \\[5ex] \dfrac{10p}{2} \\[5ex] 5p \\[3ex]

y \\[3ex] \dfrac{3p}{2}
5p \\[3ex]

2x + p \\[3ex] 2\left(\dfrac{p}{4}\right) + p \\[5ex] \dfrac{p}{2} + \dfrac{2p}{2} \\[5ex] \dfrac{p + 2p}{2} \\[5ex] \dfrac{3p}{2}
(24.)

(25.)

(26.)


(27.)

(28.)


(29.)

(30.)


(31.)

(32.)

(33.)

(34.)

(35.)

(36.)

(37.)

(38.)

(39.)

(40.)





Top




(41.)


(42.)

(43.)

(44.)

(45.)

(46.)

(47.)

(48.)

(49.)

(50.)

(51.)

(52.)